论文标题

使用单身术语保护量规对称性

Gauge-Symmetry Protection Using Single-Body Terms

论文作者

Halimeh, Jad C., Lang, Haifeng, Mildenberger, Julius, Jiang, Zhang, Hauke, Philipp

论文摘要

量子模拟器硬件有望对粒子和核物理问题的问题进行新的见解。一个主要的挑战是重现仪表不变性,因为违反了晶格仪理论的这种典型特性可能会产生巨大的后果,例如,量子电动力学中的光子质量产生。在这里,我们介绍了一种实验友好的方法,以保护量规的不变性,以$ \ mathrm {u}(1)$ lattice仪表理论以一种可控的方式针对连贯的错误。我们的方法仅采用单体能量元素术语,从而实现了实际的实现。正如我们分析得出的那样,某些惩罚系数集使不希望的轨距扇区无法通过统一动力学来实现长时间的统一动力,并且对于几个体内的错误术语,资源与系统尺寸无关。这些发现构成了对能量保护或扰动治疗的先前已知结果的指数改进。在我们的方法中,量规不变子空间受到新兴的全局对称性的保护,这意味着它可以立即应用于其他对称性。在我们用于连续时间和数字量子模拟的数值基准中,量规保护均适用于所有计算的进化时间(连续时间最高$ t> 10^{10}/j $,而相关的能量量表$ j $)。至关重要的是,我们的量规保护技术比相关的理想量规理论更容易实现,因此可以在当前的Ultracold-Atom模拟模拟器以及数字嘈杂的中间尺度量子(NISQ)设备中轻松实现。

Quantum-simulator hardware promises new insights into problems from particle and nuclear physics. A major challenge is to reproduce gauge invariance, as violations of this quintessential property of lattice gauge theories can have dramatic consequences, e.g., the generation of a photon mass in quantum electrodynamics. Here, we introduce an experimentally friendly method to protect gauge invariance in $\mathrm{U}(1)$ lattice gauge theories against coherent errors in a controllable way. Our method employs only single-body energy-penalty terms, thus enabling practical implementations. As we derive analytically, some sets of penalty coefficients render undesired gauge sectors inaccessible by unitary dynamics for exponentially long times, and, for few-body error terms, with resources independent of system size. These findings constitute an exponential improvement over previously known results from energy-gap protection or perturbative treatments. In our method, the gauge-invariant subspace is protected by an emergent global symmetry, meaning it can be immediately applied to other symmetries. In our numerical benchmarks for continuous-time and digital quantum simulations, gauge protection holds for all calculated evolution times (up to $t>10^{10}/J$ for continuous time, with $J$ the relevant energy scale). Crucially, our gauge-protection technique is simpler to realize than the associated ideal gauge theory, and can thus be readily implemented in current ultracold-atom analog simulators as well as digital noisy intermediate scale quantum (NISQ) devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源