论文标题

图形对准问题中的部分恢复

Partial Recovery in the Graph Alignment Problem

论文作者

Hall, Georgina, Massoulié, Laurent

论文摘要

在本文中,我们考虑图形对齐问题,这是恢复两个图的问题,在两个图中,在节点之间的一对一映射,最大化边缘重叠。这个问题可以看作是众所周知的图形同构问题的嘈杂版本,并出现在许多应用中,包括社交网络脱位和蜂窝生物学。我们这里的重点是部分恢复,即,我们寻找一个一对一的映射,该映射在图表的一小部分而不是所有图形上都正确,并且我们假设问题的两个输入图是相关的erdős-rényi图表$(n,q,q,s)$。然后,我们的主要贡献是为$(n,q,s)$提供必要的条件,在该条件下,由于节点的数量$ n $变为无限,因此可以以很高的可能性为例。特别是,我们表明,在某些其他假设下,有可能在$ NQS =θ(1)$制度中实现部分恢复。

In this paper, we consider the graph alignment problem, which is the problem of recovering, given two graphs, a one-to-one mapping between nodes that maximizes edge overlap. This problem can be viewed as a noisy version of the well-known graph isomorphism problem and appears in many applications, including social network deanonymization and cellular biology. Our focus here is on partial recovery, i.e., we look for a one-to-one mapping which is correct on a fraction of the nodes of the graph rather than on all of them, and we assume that the two input graphs to the problem are correlated Erdős-Rényi graphs of parameters $(n,q,s)$. Our main contribution is then to give necessary and sufficient conditions on $(n,q,s)$ under which partial recovery is possible with high probability as the number of nodes $n$ goes to infinity. In particular, we show that it is possible to achieve partial recovery in the $nqs=Θ(1)$ regime under certain additional assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源