论文标题

带有规定质量的施罗丁方程的常规波浪具有范德华型电势

Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials

论文作者

Cao, Daomin, Jia, Huifang, Luo, Xiao

论文摘要

\ begin {Abstract}在本文中,我们专注于具有范德华类型电位的Schrödinger方程的常规质量,即具有不同宽度的两体势。这导致研究以下非局部椭圆方程\ begin {qore*} \ label {1}-ΔU=λu=λu+μ(| x | x |^{ - α} \ ast | u |^{2} {2} {2} {2}) \ r^{n} \ end {equation*}在归一化的约束\ [\ int _ {{\ Mathbb {\ Mathbb {r}^n}}} {{u}^2} = c> 0,\]中$λ\ in \ mathbb {r} $是未知的,并且以Lagrange乘法器为单位。与所研究的情况$α=β$相比,上述问题的解决方案集具有不同的两个体电位$α\neqβ$的宽度的溶液集更丰富。在$ C $,$α$和$β$的不同假设下,我们证明解决方案解决上述问题的几种存在,多重性和渐近行为。另外,讨论了相关时间依赖性问题的相应驻波的稳定性。

\begin{abstract} In this paper, we focus on the standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials, that is, two-body potentials with different width. This leads to the study of the following nonlocal elliptic equation \begin{equation*}\label{1} -Δu=λu+μ(|x|^{-α}\ast|u|^{2})u+(|x|^{-β}\ast|u|^{2})u,\ \ x\in \R^{N} \end{equation*} under the normalized constraint \[\int_{{\mathbb{R}^N}} {{u}^2}=c>0,\] where $N\geq 3$, $μ\!>\!0$, $α$, $β\in (0,N)$, and the frequency $λ\in \mathbb{R}$ is unknown and appears as Lagrange multiplier. Compared with the well studied case $α=β$, the solution set of the above problem with different width of two body potentials $α\neqβ$ is much richer. Under different assumptions on $c$, $α$ and $β$, we prove several existence, multiplicity and asymptotic behavior of solutions to the above problem. In addition, the stability of the corresponding standing waves for the related time-dependent problem is discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源