论文标题

Connes Cocycle流的重力双重双

Gravity Dual of Connes Cocycle Flow

论文作者

Bousso, Raphael, Chandrasekaran, Venkatesa, Rath, Pratik, Shahbazi-Moghaddam, Arvin

论文摘要

我们将“纠结变换”定义为关于边界切割的ryu-takayanagi表面的单方面提升。对于扁平切割,我们猜想所产生的惠勒 - 戴维特贴片是Connes Cocycle(CC)流过的边界状态的大容量双重状态。将散装贴剂粘在与原始边界切片相关的前体切片上,并通过单方面的提升。这逃避了紫外线的分歧,并将我们的结构与单侧模块化流动区分开。我们验证了纠结变换与CC流下的操作员期望值和子区域熵的已知属性一致。 CC流以切割产生应力张量冲击,由熵的形状导数控制;扭结变换通过产生散装的Weyl张量冲击来重现这种冲击全息。我们还通过从扭结变换中得出新颖的冲击成分来超越CC流的已知性质。

We define the "kink transform" as a one-sided boost of bulk initial data about the Ryu-Takayanagi surface of a boundary cut. For a flat cut, we conjecture that the resulting Wheeler-DeWitt patch is the bulk dual to the boundary state obtained by Connes cocycle (CC) flow across the cut. The bulk patch is glued to a precursor slice related to the original boundary slice by a one-sided boost. This evades ultraviolet divergences and distinguishes our construction from one-sided modular flow. We verify that the kink transform is consistent with known properties of operator expectation values and subregion entropies under CC flow. CC flow generates a stress tensor shock at the cut, controlled by a shape derivative of the entropy; the kink transform reproduces this shock holographically by creating a bulk Weyl tensor shock. We also go beyond known properties of CC flow by deriving novel shock components from the kink transform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源