论文标题
Boostless Bootstrap:振幅没有Lorentz的提升
The Boostless Bootstrap: Amplitudes without Lorentz boosts
论文作者
论文摘要
庞加莱的不变性是对自然的经过良好测试的对称性,是我们对相对论颗粒和重力的描述的核心。同时,在大多数系统中,庞加莱不变性不是基态的对称性,因此自发折断。这种现象在宇宙学中无处不在,在宇宙学中,洛伦兹的提升被宇宙是同质和各向同性的首选参考框架的存在而自发地打破。这激发了我们研究散射幅度,而无需在Lorentz提升下的相互作用不变。特别是,使用壳上的方法并假设任何自旋的无质量,相对论和腔内颗粒,我们表明围绕Minkowski时空的允许相互作用受到一致分解形式的单位性和位置严重限制。相互作用的无质量自旋2粒子的存在(分析续)的三颗粒振幅是洛伦兹不变的,即使是那些不涉及重力的人,例如立方标量耦合。我们认为这对于所有N颗粒幅度都是正确的。同样,旋转S> 2的颗粒不能自我交织,也不能最小化与重力耦合,而自旋S> 1的颗粒不能具有电荷。鉴于越来越多的证据表明,无质量的腔相相关颗粒很好地描述了自由吸引力,我们的结果意味着,在Minkowski中的立方引力相互作用必须是一般相对论,直到唯一的lorentz-lorentz-invariast上等质量校正质量尺寸9的独特校正。
Poincaré invariance is a well-tested symmetry of nature and sits at the core of our description of relativistic particles and gravity. At the same time, in most systems Poincaré invariance is not a symmetry of the ground state and is hence broken spontaneously. This phenomenon is ubiquitous in cosmology where Lorentz boosts are spontaneously broken by the existence of a preferred reference frame in which the universe is homogeneous and isotropic. This motivates us to study scattering amplitudes without requiring invariance of the interactions under Lorentz boosts. In particular, using on-shell methods and assuming massless, relativistic and luminal particles of any spin, we show that the allowed interactions around Minkowski spacetime are severely constrained by unitarity and locality in the form of consistent factorization. The existence of an interacting massless spin-2 particle enforces (analytically continued) three-particle amplitudes to be Lorentz invariant, even those that do not involve a graviton, such as cubic scalar couplings. We conjecture this to be true for all n-particle amplitudes. Also, particles of spin S > 2 cannot self-interact nor can be minimally coupled to gravity, while particles of spin S > 1 cannot have electric charge. Given the growing evidence that free gravitons are well described by massless, luminal relativistic particles, our results imply that cubic graviton interactions in Minkowski must be those of general relativity up to a unique Lorentz-invariant higher-derivative correction of mass dimension 9. Finally, we point out that consistent factorization for massless particles is highly IR sensitive and therefore our powerful at-space results do not straightforwardly apply to curved spacetime.