论文标题

某些Bernoulli和Euler多项式的正交多项式和Hankel决定因素

Orthogonal polynomials and Hankel Determinants for certain Bernoulli and Euler Polynomials

论文作者

Dilcher, Karl, Jiu, Lin

论文摘要

利用某些Polygamma作为主要工具的持续分数扩展,我们发现与奇数索引bernoulli polyenmials $ b_ {2k+1}(x)$和Euler polynomials $ e_ e_ {2k+c+nmials $ e_ {2k+ν}(x)$,$ c $ c $ c $ c $ c $ c $ c $ c c $ c c $ c $ c。在此过程中,我们还确定了相应的雅各比持续分数(或j-fractions)和汉克尔的决定因素。在所有这些情况下,汉克尔的决定因素是$ x $的多项式,这完全超过了理由。

Using continued fraction expansions of certain polygamma functions as a main tool, we find orthogonal polynomials with respect to the odd-index Bernoulli polynomials $B_{2k+1}(x)$ and the Euler polynomials $E_{2k+ν}(x)$, for $ν=0, 1, 2$. In the process we also determine the corresponding Jacobi continued fractions (or J-fractions) and Hankel determinants. In all these cases the Hankel determinants are polynomials in $x$ which factor completely over the rationals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源