论文标题
Su-Schrieffer-Heeger模型中断开分区的拓扑纠缠特性
Topological entanglement properties of disconnected partitions in the Su-Schrieffer-Heeger model
论文作者
论文摘要
我们研究了Su-Schrieffer-Heeger模型的断开纠缠熵$ s^d $。 $ s^d $是连接和断开的两分纠缠熵的组合,可消除所有区域和批量法律贡献,因此仅对在基态歧管中存储的非本地纠缠敏感。使用分析和数值计算,我们表明$ s^d $的表现是拓扑不变的,即,在拓扑上琐碎和非平凡的阶段中,它分别量化为$ 0 $或$ 2 \ log(2)$。这些结果也存在于存在对称性疾病的情况下。在将两个阶段分开的二阶相变,$ s^d $显示了类似于常规订单参数的系统大小的缩放行为,这使我们能够计算纠缠关键指数。为了证实$ s^d $的量化值的拓扑来源,我们显示了后者在以量子淬灭的形式应用单一时间演变后如何保持量化,这是量子不变的一个特征。
We study the disconnected entanglement entropy, $S^D$, of the Su-Schrieffer-Heeger model. $S^D$ is a combination of both connected and disconnected bipartite entanglement entropies that removes all area and volume law contributions, and is thus only sensitive to the non-local entanglement stored within the ground state manifold. Using analytical and numerical computations, we show that $S^D$ behaves as a topological invariant, i.e., it is quantized to either $0$ or $2 \log (2)$ in the topologically trivial and non-trivial phases, respectively. These results also hold in the presence of symmetry-preserving disorder. At the second-order phase transition separating the two phases, $S^D$ displays a system-size scaling behavior akin to those of conventional order parameters, that allows us to compute entanglement critical exponents. To corroborate the topological origin of the quantized values of $S^D$, we show how the latter remain quantized after applying unitary time evolution in the form of a quantum quench, a characteristic feature of topological invariants.