论文标题
$ \ mathbb {p}^n $中点的cayley-bacharach定理
A Cayley-Bacharach theorem for points in $\mathbb{P}^n$
论文作者
论文摘要
我们证明了一个在投影空间中的点的cayley-bacharach型定理$ \ mathbb {p}^n $,该定理位于$ n $ hypersurfaces的完整交集上。这是通过新的几乎完整交叉点的希尔伯特功能增长的新界限使这成为可能。
We prove a Cayley-Bacharach-type theorem for points in projective space $\mathbb{P}^n$ that lie on a complete intersection of $n$ hypersurfaces. This is made possible by new bounds on the growth of the Hilbert function of almost complete intersections.