论文标题
对于分形的光谱测量,准模量的公式
The Formula for the Quasicentral Modulus in the Case of Spectral Measures on Fractals
论文作者
论文摘要
我们证明,相对于(P,1)Lorentz Norm Indord的理想,对(p,1)lorentz n核的准模量产生了一般的扩增均匀性结果。我们用它来证明一种公式,该公式涉及husdorff措施,用于通勤赫里米亚运算符的N个tuplass的准模量,其频谱包含在某些类似Cantor的自相似分形中。
We prove a general ampliation homogeneity result for the quasicentral modulus of an n-tuple of operators with respect to the (p,1) Lorentz normed ideal. We use this to prove a formula involving Hausdorff measure for the quasicentral modulus of n-tuples of commuting Hermitian operators the spectrum of which is contained in certain Cantor-like self-similar fractals.