论文标题
多个平坦的带和拓扑霍夫史塔特蝴蝶,扭曲的双层石墨烯靠近第二个魔术角
Multiple Flat Bands and Topological Hofstadter Butterfly in Twisted Bilayer Graphene Close to the Second Magic Angle
论文作者
论文摘要
二维(2D)范德华(VDW)异质结构中的Moiré超晶格提供了20种工程电子带性能的有效方法。最近发现的异国量子阶段及其在扭曲的双层石墨烯(TBLG)中的相互作用已建立了该莫伊尔系统是最著名的凝结物质平台之一(1-10)。到目前为止,TBLG的研究主要集中在第一个魔术角θm1〜1.1°上的最低两个平坦的Moiré频段上,留下了高阶Moiré频段和魔法角度。在这里,我们报告了25观察到靠近第二个魔术角θm2〜0.5°的TBLG中多个良好溶解的扁平Moiré带的观察,如果不考虑电子选举相互作用,就无法解释。使用高磁场磁场传输测量值,我们进一步揭示了一个质量上新的,能量上未结合的Hofstadter Butterfly频谱,其中连续扩展的量化Landau级别差距跨越了所有琐碎的带隙。 30个连接的Hofstadter蝴蝶强烈证明了多个Moiré乐队的拓扑非平地纹理。总体而言,我们的工作提供了一种新的观点,可以理解TBLG中的量子阶段和多个拓扑带的分形Hofstadter光谱。
Moiré superlattices in two-dimensional (2D) van der Waals (vdW) heterostructures provide 20 an efficient way to engineer electron band properties. The recent discovery of exotic quantum phases and their interplay in twisted bilayer graphene (tBLG) has built this moiré system one of the most renowned condensed matter platforms (1-10). So far the studies of tBLG has been mostly focused on the lowest two flat moiré bands at the first magic angle θm1 ~ 1.1°, leaving high-order moiré bands and magic angles largely unexplored. Here we report 25 an observation of multiple well-isolated flat moiré bands in tBLG close to the second magic angle θm2 ~ 0.5°, which cannot be explained without considering electron-election interactions. With high magnetic field magneto-transport measurements, we further reveal a qualitatively new, energetically unbound Hofstadter butterfly spectrum in which continuously extended quantized Landau level gaps cross all trivial band-gaps. The 30 connected Hofstadter butterfly strongly evidences the topologically nontrivial textures of the multiple moiré bands. Overall, our work provides a new perspective for understanding the quantum phases in tBLG and the fractal Hofstadter spectra of multiple topological bands.