论文标题
格子克利福德(Clifford Fracton)及其Chern-Simons式理论
Lattice Clifford fractons and their Chern-Simons-like theory
论文作者
论文摘要
我们使用Clifford代数的Dirac矩阵表示形式在晶格及其有效的Chern-Simons样理论上构建分布型模型。例如,我们在奇数$ d $空间维度及其$(D+1)$有效理论中构建晶格平原。该模型具有类似于等级量子厅态的反对称$ k $矩阵。仪表电荷在次要歧管中保守,可确保分形行为。该施工延伸到通过通勤投影仪建立的任何晶格Fracton型号,并在该地点的自由度为$ 1/2美元的张量产品。
We use Dirac matrix representations of the Clifford algebra to build fracton models on the lattice and their effective Chern-Simons-like theory. As an example we build lattice fractons in odd $D$ spatial dimensions and their $(D+1)$ effective theory. The model possesses an anti-symmetric $K$ matrix resembling that of hierarchical quantum Hall states. The gauge charges are conserved in sub-dimensional manifolds which ensures the fractonic behavior. The construction extends to any lattice fracton model built from commuting projectors and with tensor products of spin-$1/2$ degrees of freedom at the sites.