论文标题

由排列和笛卡尔产物引起的严格最小反应系统的等级

Ranks of Strictly Minimal Reaction Systems Induced by Permutations and Cartesian Product

论文作者

Teh, Wen Chean, Nguyen, Kien Trung, Chen, Chuei Yee

论文摘要

反应系统是一种受到活细胞内发生的生化相互作用启发的计算模型。已经提出了出于生物学,物理或纯数学考虑的各种扩展或修改的框架,并受到了大量关注,特别是在近年来。然而,这项研究采用了特定的早期作品,这些作品集中在无上下文的基本框架中最小反应系统的数学性质,并以最新的结果对严格最小反应系统的充分性进行了促进,以模拟每个反应系统。本文的重点是严格最小的反应系统可实现的最大反应系统等级,其中等级与功能等效反应系统的最小大小有关。确切地说,我们提供了一项非常详细的研究,该研究针对由排列引起的特定最小反应系统,直到第四纪字母。一路上,我们获得了关于反应系统指定的功能的笛卡尔产物反应系统等级的一般结果。

Reaction system is a computing model inspired by the biochemical interaction taking place within the living cells. Various extended or modified frameworks motivated by biological, physical, or purely mathematically considerations have been proposed and received significant amount of attention, notably in the recent years. This study, however, takes after particular early works that concentrated on the mathematical nature of minimal reaction systems in the context-free basic framework and motivated by a recent result on the sufficiency of strictly minimal reaction systems to simulate every reaction system. This paper focuses on the largest reaction system rank attainable by strictly minimal reaction systems, where the rank pertains to the minimum size of a functionally equivalent reaction system. Precisely, we provide a very detailed study for specific strictly minimal reaction system induced by permutations, up to the quaternary alphabet. Along the way, we obtain a general result about reaction system rank for Cartesian product of functions specified by reaction systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源