论文标题

引力冲击波和散射幅度

Gravitational shock waves and scattering amplitudes

论文作者

Cristofoli, Andrea

论文摘要

我们使用散射幅度技术研究重力冲击波。在首先回顾了施瓦茨柴尔德解决方案的超偏移性增强性的一般相对论之后,我们通过利用散射幅度和对爱因斯坦田间方程的解决方案之间的新颖关系来提供替代推导。我们证明,引力冲击波是由三点函数的经典部分带来的,带有两个无质量标量和一个重力。辐射局部的区域具有分布曲线,现在以自然的方式恢复,因此绕过了在一般相对论中使用的单数坐标转换的引入。该计算很容易将其推广到任意维度,我们展示了经典解决方案的精确性如何遵循较高循环的经典贡献。还提供了引力和电磁冲击波之间的经典双拷贝,对于旋转源,使用三个点振幅​​的指数形式,我们推断引力冲击波与旋转的旋转之间的显着关系,也称为陀螺。使用此属性,我们推断出描述带有自旋引力冲击波的一系列精确解决方案。然后,我们在冲击波背景下计算粒子的相移,发现与Amati,Ciafaloni和Veneziano较早计算的颗粒相比,以高能极限。应用于吉拉顿,它为旋转中所有阶的散射角提供了结果。

We study gravitational shock waves using scattering amplitude techniques. After first reviewing the derivation in General Relativity as an ultrarelativistic boost of a Schwarzschild solution, we provide an alternative derivation by exploiting a novel relation between scattering amplitudes and solutions to Einstein's field equations. We prove that gravitational shock waves arise from the classical part of a three point function with two massless scalars and a graviton. The region where radiation is localized has a distributional profile and it is now recovered in a natural way, thus bypassing the introduction of singular coordinate transformations as used in General Relativity. The computation is easily generalized to arbitrary dimensions and we show how the exactness of the classical solution follows from the absence of classical contributions at higher loops. A classical double copy between gravitational and electromagnetic shock waves is also provided and for a spinning source, using the exponential form of three point amplitudes, we infer a remarkable relation between gravitational shock waves and spinning ones, also known as gyratons. Using this property, we infer a family of exact solutions describing gravitational shock waves with spin. We then compute the phase shift of a particle in a background of shock waves finding agreement with an earlier computation by Amati, Ciafaloni and Veneziano for particles in the high energy limit. Applied to a gyraton, it provides a result for the scattering angle to all orders in spin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源