论文标题
一个统一的界限,以惯性等效,纯$ \ ell $ - ad-adic表示:faltings'定理的扩展
A uniform bound for inertially equivalent, pure $\ell$-adic representations: an extension of Faltings' theorem
论文作者
论文摘要
我们介绍了全球领域Galois组的积分$ \ ell $ -ADIC代表的惯性等价概念。我们表明,全球田地的绝对Galois组的连续,半充实,纯净的$ \ ell $ - $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - ad $ - $ \ ell $ ad的代表,从而提升了固定的绝对不可还原的残留表示,并且在固定有限的一组位置外,具有固定的惯性类型均匀地限制了独立于惯性类型。
We introduce a notion of inertial equivalence for integral $\ell$-adic representation of the Galois group of a global field. We show that the collection of continuous, semisimple, pure $\ell$-adic representations of the absolute Galois group of a global field lifting a fixed absolutely irreducible residual representation and with given inertial type outside a fixed finite set of places is uniformly bounded independent of the inertial type.