论文标题
tolman iv液体球体
Tolman IV fluid sphere in bigravity
论文作者
论文摘要
我们介绍了代表大剂量的紧凑型液体球体的Tolman IV时空。在这里,我们探讨了比例参数$ k $在紧凑型恒星的本地物质分布中的效果。我们有三个众所周知的紧凑型恒星的模型,它表明,对于$ k $的较低值,会导致EOS更硬。图形分析也支持该主张。可以观察到,声速和绝热指数更多地用于$ k $的较低值。还可以看出,在存在背景度量$γ_{μν} $的情况下,爱因斯坦字段方程的所有解决方案仍在满足场方程。但是,密度和压力确实通过恒定曲率背景的额外项来改变,从而影响EOS。人们还可以认为参数$α\ equiv 1/k^2 $是$ g_ {μν} $和$γ_{μν} $之间的耦合常数,因此,耦合更强是EOS。作为$ k \ rightArrow \ infty $,背景时间时空的时空减少到Minkowski的时空和耦合消失。该溶液满足了重力和静水力下的因果关系,所有能量条件和平衡。通过降低背景时空的标态曲率,可以增强局部恒星结构的稳定性。
We present Tolman IV spacetime representing compact fluid sphere in bigravity. Here we have explored the effect of scale parameter $k$ in the local matter distribution of compact stars. We have model for three well-known compact stars and it shows that for lower values of $k$ leads to stiffer EoS. This claim is also supported by the graphical analysis. It can be observed that the sound speed and the adiabatic index are more for lower values of $k$. It is also seen that all the solutions of Einstein's field equations are still satisfying the field equations in the presence of a background metric $γ_{μν}$. However, the density and pressure does modified by extra term from the constant curvature background, thus affecting the EoS. One can also think that the parameter $α\equiv 1/k^2$ as coupling constant between the $g_{μν}$ and $γ_{μν}$ and consequently more the coupling stiffer is the EoS. As $k\rightarrow \infty$, the background de-Sitter spacetime reduces to Minkowski's spacetime and the coupling vanishes. The solution satisfy the causality condition, all the energy conditions and equilibrium under gravity and hydrostatic forces. The stability of the local stellar structure is enhanced by reducing the scalar curvature of the background spacetime.