论文标题
Schrödinger型运算符的弱耦合极限,具有简并动能的大量电势
Weak coupling limit for Schrödinger-type operators with degenerate kinetic energy for a large class of potentials
论文作者
论文摘要
我们改善了Frank,Hainzl,Naboko和Seiringer [12]以及Hainzl和Seiringer [20]对Schrödinger-type操作员的特征值弱耦合极限的结果,它们的动能在一个编码上消失在一个codimension submanifold上。使我们超越[12,20]中考虑的潜力的主要技术创新是使用Tomas-Stein定理。
We improve results by Frank, Hainzl, Naboko, and Seiringer [12] and Hainzl and Seiringer [20] on the weak coupling limit of eigenvalues for Schrödinger-type operators whose kinetic energy vanishes on a codimension one submanifold. The main technical innovation that allows us to go beyond the potentials considered in [12, 20] is the use of the Tomas-Stein theorem.