论文标题

$ c^*$ - 正面运营商的极端要点有价值的措施和一个完全正面地图

$C^*$-extreme points of positive operator valued measures and unital completely positive maps

论文作者

Banerjee, Tathagata, Bhat, B V Rajarama, Kumar, Manish

论文摘要

我们研究了可测量的空间上归一化正运算符估价措施(POVM)的量子($ c^*$)。特别是,可以看出,与经典凸度下的极端点不同,$ c^*$ - 可计数空间(尤其是有限集合)上归一化POVM的极端点始终是光谱措施(归一化投影有价值的措施)。更一般地表明,原子$ c^*$ - 极端点是光谱。还证明了Krein-Milman型定理。作为一个应用程序,显示出具有可计数频谱的任何交换Unital $ c^*$ - 代数(尤其是$ {\ Mathbb c}^n $)的地图是$ c^*$ - 仅当Unital $*$ - $*$ - 同种异体中,仅在一组UNITAL APTRINE MAPS中的$ C^*$。

We study the quantum ($C^*$) convexity structure of normalized positive operator valued measures (POVMs) on measurable spaces. In particular, it is seen that unlike extreme points under classical convexity, $C^*$-extreme points of normalized POVMs on countable spaces (in particular for finite sets) are always spectral measures (normalized projection valued measures). More generally it is shown that atomic $C^*$-extreme points are spectral. A Krein-Milman type theorem for POVMs has also been proved. As an application it is shown that a map on any commutative unital $C^*$-algebra with countable spectrum (in particular ${\mathbb C}^n$) is $C^*$-extreme in the set of unital completely positive maps if and only if it is a unital $*$-homomorphism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源