论文标题

在混合双曲线材料/硅波导异质结构中引导的MID-IR和近IR光

Guided Mid-IR and Near-IR Light within a Hybrid Hyperbolic-Material/Silicon Waveguide Heterostructure

论文作者

He, Mingze, Halimi, Sami I., Folland, Thomas G., Sunku, Sai S., Liu, Song, Edgar, James H., Basov, Dmitri N., Weiss, Sharon M., Caldwell, Joshua D.

论文摘要

硅波导已经实现了芯片上近红外光学信号的大规模操纵和处理。然而,将导向波的带宽扩展到其他频率将进一步提高硅作为光子平台的功能。通过集成其他体系结构来进行频率多路复用是解决问题的一种方法,但是由于与自由空间波长的缩放,设计和集成在现有的外形尺寸中是一项挑战。在这里,我们证明了六角硼(HBN)/硅混合波导可以分别在中红外(6.5-7.0 um)和电信(1.55 um)频率上实现双波段操作。我们的设备是通过将HBN传递到硅波导中的,维持近红外操作的,而HBN中双曲线声子极性子(HPHP)的中红抛光引导是由硅波导和周围空气之间的指数对比引起的,从而消除了Delelederious Etch的需求。我们验证了在直轨迹和弯曲轨迹中的HPHP波的行为,并在分析波导理论框架内验证其传播特性。这种方法例证了一种基于将双曲线介质与硅光子学整合,以实现片上光子系统中的频率多路复用。

Silicon waveguides have enabled large-scale manipulation and processing of near-infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies would further increase the functionality of silicon as a photonics platform. Frequency multiplexing by integrating additional architectures is one approach to the problem, but this is challenging to design and integrate within the existing form factor due to scaling with the free-space wavelength. Here, we demonstrate that a hexagonal boron nitride (hBN)/silicon hybrid waveguide can enable dual-band operation at both mid-infrared (6.5-7.0 um) and telecom (1.55 um) frequencies, respectively. Our device is realized via lithography-free transfer of hBN onto a silicon waveguide, maintaining near-infrared operation, while mid-infrared waveguiding of the hyperbolic phonon polaritons (HPhPs) in hBN is induced by the index contrast between the silicon waveguide and the surrounding air, thereby eliminating the need for deleterious etching of the hBN. We verify the behavior of HPhP waveguiding in both straight and curved trajectories, and validate their propagation characteristics within an analytical waveguide theoretical framework. This approach exemplifies a generalizable approach based on integrating hyperbolic media with silicon photonics for realizing frequency multiplexing in on-chip photonic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源