论文标题

血浆科学的慢歧管减少

Slow manifold reduction for plasma science

论文作者

Burby, J. W., Klotz, T. J.

论文摘要

经典的Chapman-Enskog程序接受了一种大量的几何概括,称为缓慢的流形减少。这种概括为在血浆物理学中得出和理解大多数减少模型的范例提供了基于用于多个时间尺度问题的受控近似值。在这篇综述中,我们考虑了血浆物理学受众的慢速降低理论。特别是我们说明了(a)如何使用缓慢的歧视概念来理解降低模型的\ emph {bectdown}在足够长的时间间隔上,以及(b)慢速歧管理论的离散时间模拟如何为为时间验证等离子模型开发隐性集成符提供有用的框架。对于接受更先进的数学训练的读者,我们还使用慢速降低的降低来解释无耗散减少血浆模型中汉密尔顿结构遗传的现象。该理论的各个方面在亚伯拉罕·洛伦兹(Abraham-Lorentz)模型的背景下进行了说明,该模型的单个带电粒子经历了自身的辐射阻力。作为一个最终的示例,我们得出了在扰动理论中至一阶的基础动力学抽动等离子动力学的慢速歧管。该一阶结果结合了与精确电荷中立的小偏差相关的几种物理效应,这会导致基于前阶近似$ n_e = z_i \,n_i $的预测缓慢偏离预测。

The classical Chapman-Enskog procedure admits a substantial geometrical generalization known as slow manifold reduction. This generalization provides a paradigm for deriving and understanding most reduced models in plasma physics that are based on controlled approximations applied to problems with multiple timescales. In this Review we develop the theory of slow manifold reduction with a plasma physics audience in mind. In particular we illustrate (a) how the slow manifold concept may be used to understand \emph{breakdown} of a reduced model over sufficiently-long time intervals, and (b) how a discrete-time analogue of slow manifold theory provides a useful framework for developing implicit integrators for temporally-stiff plasma models. For readers with more advanced mathematical training we also use slow manifold reduction to explain the phenomenon of inheritance of Hamiltonian structure in dissipation-free reduced plasma models. Various facets of the theory are illustrated in the context of the Abraham-Lorentz model of a single charged particle experiencing its own radiation drag. As a culminating example we derive the slow manifold underlying kinetic quasineutral plasma dynamics up to first-order in perturbation theory. This first-order result incorporates several physical effects associated with small deviations from exact charge neutrality that lead to slow drift away from predictions based on the leading-order approximation $n_e = Z_i \,n_i$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源