论文标题
可访问产品的定量全球本地混合
Quantitative global-local mixing for accessible skew products
论文作者
论文摘要
我们研究了具有指数式混合碱和非压缩纤维的一系列可访问偏斜产品的全球本地混合,并保留了无限度量。对于一组几乎周期性的全球可观测物,我们证明了快速混合。对于一组密集的全球可观察物在无穷大消失,我们证明了多项式混合。更一般而言,我们将混合速度与与我们的全局可观察物相关的光谱度量的“低频行为”联系起来。我们的策略依靠可观察到的空间的仔细选择以及对扭曲转移操作员家族的研究。
We study global-local mixing for a family of accessible skew products with an exponentially mixing base and non-compact fibers, preserving an infinite measure. For a dense set of almost periodic global observables, we prove rapid mixing; and for a dense set of global observables vanishing at infinity, we prove polynomial mixing. More generally, we relate the speed of mixing to the "low frequency behaviour" of the spectral measure associated to our global observables. Our strategy relies on a careful choice of the spaces of observables and on the study of a family of twisted transfer operators.