论文标题

雷骑士的雷克代表

A Ray-Knight representation of up-down Chinese restaurants

论文作者

Rogers, Dane, Winkel, Matthias

论文摘要

我们研究了在中国餐厅流程(CRP)框架中自然出现的构图价值连续时间马尔可夫连锁店。随着时间的流逝,新客户到达(上步),现有客户以源自Pitman and Winkel(2009)的CRP的合适价格离开(下步)。我们将这种上下的CRP与兰伯特(2010)诱导频谱积极过程的分裂树相关联。相反,我们开发了Ray-knight类型的定理,以从Lévy过程的高度恢复更通用的上下CRP,并以整数价值路径标记的跳跃。我们进一步建立了Lévy过程的限制定理,以及由Forman等人连接到工作的整数值的途径。 (2018+)在间隔分区的扩散及其一些长期的猜想中。

We study composition-valued continuous-time Markov chains that appear naturally in the framework of Chinese Restaurant Processes (CRPs). As time evolves, new customers arrive (up-step) and existing customers leave (down-step) at suitable rates derived from the ordered CRP of Pitman and Winkel (2009). We relate such up-down CRPs to the splitting trees of Lambert (2010) inducing spectrally positive Lévy processes. Conversely, we develop theorems of Ray-Knight type to recover more general up-down CRPs from the heights of Lévy processes with jumps marked by integer-valued paths. We further establish limit theorems for the Lévy process and the integer-valued paths to connect to work by Forman et al. (2018+) on interval partition diffusions and hence to some long-standing conjectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源