论文标题
关于动作与链接之间的关系
On the relation between action and linking
论文作者
论文摘要
我们在第三维中引入了接触形式的数值不变性,并使用渐近周期来估计它们。结果,我们证明了Anosov Reeb Reeb流量的版本,因为Hutchings和Weiler对定期点的平均操作。主要工具是动作链接引理,表达了由周期性轨道界定的表面的接触面积,这是大多数轨迹与表面的渐近交点的liouville平均值。
We introduce numerical invariants of contact forms in dimension three and use asymptotic cycles to estimate them. As a consequence, we prove a version for Anosov Reeb flows of results due to Hutchings and Weiler on mean actions of periodic points. The main tool is the Action-Linking Lemma, expressing the contact area of a surface bounded by periodic orbits as the Liouville average of the asymptotic intersection number of most trajectories with the surface.