论文标题
通用梁软生长机器人的一般执行器路由的几何解决方案
Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots
论文作者
论文摘要
连续体和软机器人可以利用复杂的执行器形状来呈现有用的形状,同时仅驱动其许多自由度中的少数。也会增长的连续机器人增加了可以驱动的潜在形状的范围,并可以更轻松地进入受限环境。现有的用于描述连续机器人一般致动的复杂运动学的模型依赖于模拟或举止良好的压力 - 应变关系,但是在生长机器人中使用的薄壁膨胀梁的非线性行为使这些技术难以应用。在这里,我们在仅几何关系的无延迟但灵活的材料的柔软气动骨架上得出了单个,通常路由肌腱路径的运动学模型。这只能仅了解系统几何形状的知识来对产生的形状进行正向建模。我们表明,该模型可以准确地预测整个机器人体的形状以及模型如何随驱动类型而变化。我们还证明了这种运动学模型在逆设计中的使用,其中根据所需的最终机器人形状找到执行器设计。我们将这些设计的执行器部署在软气动生长的机器人上,以显示同时增长和形状变化的好处。
Continuum and soft robots can leverage complex actuator shapes to take on useful shapes while actuating only a few of their many degrees of freedom. Continuum robots that also grow increase the range of potential shapes that can be actuated and enable easier access to constrained environments. Existing models for describing the complex kinematics involved in general actuation of continuum robots rely on simulation or well-behaved stress-strain relationships, but the non-linear behavior of the thin-walled inflated-beams used in growing robots makes these techniques difficult to apply. Here we derive kinematic models of single, generally routed tendon paths on a soft pneumatic backbone of inextensible but flexible material from geometric relationships alone. This allows for forward modeling of the resulting shapes with only knowledge of the geometry of the system. We show that this model can accurately predict the shape of the whole robot body and how the model changes with actuation type. We also demonstrate the use of this kinematic model for inverse design, where actuator designs are found based on desired final robot shapes. We deploy these designed actuators on soft pneumatic growing robots to show the benefits of simultaneous growth and shape change.