论文标题

一种分析中心切割平面方法,以确定矩阵的完全阳性

An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix

论文作者

Badenbroek, Riley, de Klerk, Etienne

论文摘要

我们提出了一种分析中心切割平面方法,以确定矩阵是否完全正面,并返回将其与完全正锥体分开的切割。这是Berman,Dür和Shaked-Monderer的开放(计算)问题[线性代数电子杂志,2015年]。我们的方法优化了球与共同锥体的交集,其中会员资格是通过求解Xia,Vera和Zuluaga建议的混合智能线性程序来确定的[Indors on Computing on Computing,2018年]。因此,只要知道一个包含最佳溶液的球的半径,我们的算法就可以用来解决任何共同优化问题。数值实验表明,我们实现量表的Oracle调用数量(矩阵共阳性检查)与矩阵大小相当,大致像$ O(D^2)$(对于$ d \ times d $ d $矩阵)。该方法在Julia中实现,可在https://github.com/rileybadenbroek/copositiveanalyticcenter.jl上找到。

We propose an analytic center cutting plane method to determine if a matrix is completely positive, and return a cut that separates it from the completely positive cone if not. This was stated as an open (computational) problem by Berman, Dür, and Shaked-Monderer [Electronic Journal of Linear Algebra, 2015]. Our method optimizes over the intersection of a ball and the copositive cone, where membership is determined by solving a mixed-integer linear program suggested by Xia, Vera, and Zuluaga [INFORMS Journal on Computing, 2018]. Thus, our algorithm can, more generally, be used to solve any copositive optimization problem, provided one knows the radius of a ball containing an optimal solution. Numerical experiments show that the number of oracle calls (matrix copositivity checks) for our implementation scales well with the matrix size, growing roughly like $O(d^2)$ for $d\times d$ matrices. The method is implemented in Julia, and available at https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源