论文标题
一种稳定而准确的方案,用于解决Stefan问题,并使用沉浸式边界平滑延伸方法结合自然对流
A stable and accurate scheme for solving the Stefan problem coupled with natural convection using the Immersed Boundary Smooth Extension method
论文作者
论文摘要
固体的溶解创造了从厘米尺度的洞穴扇贝到中国和马达加斯加的千年规模的“石森林”。从数学上讲,溶解过程是通过Stefan问题建模的,该过程描述了相分离界面的运动如何取决于局部浓度梯度,并耦合到流体流动。模拟这些问题是具有挑战性的,需要自由界面的演变,该界面的运动取决于不断变化的域中外部场的正常衍生物。此外,在流体结构域中产生的密度差异会引起自动化的对流流,这进一步使溶解过程的数值研究变得复杂。在此贡献中,我们提出了一种模拟Stefan问题与流体流量的数值方法。该方案使用浸入的边界平滑扩展方法来求解复合物,不断发展的几何形状中的整体对流扩散和流体方程,并耦合到提供边界稳定演化的θ-L方案。我们展示了经典Stefan问题方案的三阶时间和尖锐的空间收敛,以及耦合到流动时的二阶时间和刻度的空间收敛。对导致高雷利数量对流的固体溶解的例子进行了数值研究,并在最近的实验中定性地再现了复杂的形态。
The dissolution of solids has created spectacular geomorphologies ranging from centimeter-scale cave scallops to the kilometer-scale "stone forests" of China and Madagascar. Mathematically, dissolution processes are modeled by a Stefan problem, which describes how the motion of a phase-separating interface depends on local concentration gradients, coupled to a fluid flow. Simulating these problems is challenging, requiring the evolution of a free interface whose motion depends on the normal derivatives of an external field in an ever-changing domain. Moreover, density differences created in the fluid domain induce self-generated convecting flows that further complicate the numerical study of dissolution processes. In this contribution, we present a numerical method for the simulation of the Stefan problem coupled to a fluid flow. The scheme uses the Immersed Boundary Smooth Extension method to solve the bulk advection-diffusion and fluid equations in the complex, evolving geometry, coupled to a θ-L scheme that provides stable evolution of the boundary. We demonstrate third-order temporal and pointwise spatial convergence of the scheme for the classical Stefan problem, and second-order temporal and pointwise spatial convergence when coupled to flow. Examples of dissolution of solids that result in high-Rayleigh number convection are numerically studied, and qualitatively reproduce the complex morphologies observed in recent experiments.