论文标题
MRI中的心肌运动跟踪的生物力学知识神经网络
Biomechanics-informed Neural Networks for Myocardial Motion Tracking in MRI
论文作者
论文摘要
图像登记是一个不当的逆问题,通常需要在解决方案空间上进行正则化。与施加明确正规化术语(例如平滑度)的大多数当前方法相反,在本文中,我们提出了一种可以隐式学习生物力学知识的正则化的新方法。这种方法可以将特定于应用的先验知识纳入基于深度学习的注册中。尤其是,提出的生物力学知识正规化利用了变异自动编码器(VAE)学习生物力学上可行变形的多种多样,并通过重建生物力学模拟来隐式捕获其潜在的特性。然后,学到的VAE常规机可以与任何基于深度学习的注册网络结合,以使解决方案空间在生物力学上合理。在两个不同数据集的心脏MRI数据的2D堆栈上,在心肌运动跟踪的背景下验证了所提出的方法。结果表明,就运动跟踪准确性而言,它可以在其他竞争方法上实现更好的性能,并具有学习生物力学特性(例如不可压缩性和菌株)的能力。与常用的L2正则化方案相比,该方法还显示出更好的概括性可概括性。
Image registration is an ill-posed inverse problem which often requires regularisation on the solution space. In contrast to most of the current approaches which impose explicit regularisation terms such as smoothness, in this paper we propose a novel method that can implicitly learn biomechanics-informed regularisation. Such an approach can incorporate application-specific prior knowledge into deep learning based registration. Particularly, the proposed biomechanics-informed regularisation leverages a variational autoencoder (VAE) to learn a manifold for biomechanically plausible deformations and to implicitly capture their underlying properties via reconstructing biomechanical simulations. The learnt VAE regulariser then can be coupled with any deep learning based registration network to regularise the solution space to be biomechanically plausible. The proposed method is validated in the context of myocardial motion tracking on 2D stacks of cardiac MRI data from two different datasets. The results show that it can achieve better performance against other competing methods in terms of motion tracking accuracy and has the ability to learn biomechanical properties such as incompressibility and strains. The method has also been shown to have better generalisability to unseen domains compared with commonly used L2 regularisation schemes.