论文标题
非均匀紧张的2D半导体的漏斗效率的限制
Limits of funneling efficiency in non-uniformly strained 2D semiconductors
论文作者
论文摘要
当这些材料不均匀时,在过渡金属二分法中(TMDC)中的光激发电子孔对(激子)会产生有效的力。在悬浮TMDC膜中心的尖尖压力下产生的应变,将激子运输到膜中心的最高应变点。这种效果,即激子漏斗,可用于提高TMDC的光转换效率,探索激子的传输,并研究在高密度下产生的激子的相关状态。在这里,我们分析了逼真的设备几何形状中汇合效率的限制。发现现实单层TMDC的漏斗效率很低,$ <5 \; \%$均在房间和低温下。这是由于在室温下的主要扩散和低温下的短激子寿命。另一方面,在具有长期激子寿命的TMDC异质结构中,漏斗效率在室温下达到$ \ sim 50 \; \%$,因为激子密度达到漏斗中的热平衡。最后,我们表明螺旋重组限制了强烈照明来源的漏斗效率。
Photoexcited electron-hole pairs (excitons) in transition metal dichalcogenides (TMDC) experience an effective force when these materials are non-uniformly strained. In the case of strain produced by a sharp tip pressing at the center of a suspended TMDC membrane, the excitons are transported to the point of the highest strain at the center of the membrane. This effect, exciton funneling, can be used to increase photoconversion efficiency in TMDC, to explore exciton transport, and to study correlated states of excitons arising at their high densities. Here, we analyze the limits of funneling efficiency in realistic device geometries. The funneling efficiency in realistic monolayer TMDCs is found to be low, $ <5 \;\%$ both at room and low temperatures. This results from dominant diffusion at room temperature and short exciton lifetimes at low temperatures. On the other hand, in TMDC heterostructures with long exciton lifetimes the funneling efficiency reaches $\sim 50\;\%$ at room temperature, as the exciton density reaches thermal equilibrium in the funnel. Finally, we show that Auger recombination limits funneling efficiency for intense illumination sources.