论文标题

$ D $ -SPHERES的构建来自$(D-1)$ - 球和$ D $ - 带有相同顶点的$ D $ -

Constructions of $d$-spheres from $(d-1)$-spheres and $d$-balls with same set of vertices

论文作者

Datta, Basudeb

论文摘要

给定一个组合$(D-1)$ - SPHERE $ S $,用于构建一个组合$ D $ -SPHERE $ S^{\ HSPACE {.2mm} \ prime} $包含$ S $,通常需要更多的顶点。在这里,我们考虑一个问题,如果没有任何其他顶点,我们是否可以进行此类构造。我们表明,当$ s $是国旗球,一个堆叠球或球的联接时,这个问题就会有肯定的答案。我们还考虑一个问题,我们是否可以构建包含给定$ n $ vertex组合$ d $ d $ -ball的$ n $ vertex组合$ d $ -sphere。

Given a combinatorial $(d-1)$-sphere $S$, to construct a combinatorial $d$-sphere $S^{\hspace{.2mm}\prime}$ containing $S$, one usually needs some more vertices. Here we consider the question whether we can do one such construction without the help of any additional vertices. We show that this question has affirmative answer when $S$ is a flag sphere, a stacked sphere or a join of spheres. We also consider the question whether we can construct an $n$-vertex combinatorial $d$-sphere containing a given $n$-vertex combinatorial $d$-ball.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源