论文标题

衰老中的无机玻璃破裂,靠近$ {t_g} $弹性放松探测

Ergodicity breaking of an inorganic glass in aging near ${T_g}$ probed by elasticity relaxation

论文作者

Wang, Jianbiao, Wang, Xu, Ruan, Haihui

论文摘要

我们在温度$ {T_2} $附近,在玻璃过渡点$ {t_g} $附近,首先在$ {t_1} $上放松下来,以$ {t_g} $进行$ {t_g} $。监视了杨氏模量的放松,这是(如果理想的话,也是理想的,也是理想的),则使用$ {t_1} $ - 依赖的放松时间$ {τ(t_1)} $。我们首次在无机眼镜中首次撤销了科瓦奇人的悖论。与$τ$的发散相关,准平衡的Young的模量$ {E_ \ infty} $也不会收敛。放松时间的弹性模型和对$ {e_ \ infty} $的Mori-Tanaka分析,导致对历史的持续记忆的类似估计,在可访问的实验时间内破裂的奇异性。具有不同$ {T_2} $的实验表现出关键温度$ {t_p \ sim t_g} $,即当$ {t_2> t_p} $时,$τ$和$ {e_ \ infty} $ converge。

We performed a series of aging experiments of an inorganic glass (As${_2}$Se${_3}$) at a temperature ${T_2}$ near the glass transition point ${T_g}$ by first relaxing it at ${T_1}$. The relaxation of Young's modulus was monitored, which was(almost if not ideally) exponential with a ${T_1}$-dependent relaxation time ${τ(T_1)}$. We demostrate the Kovacs' paradox for the first time in an inorganic glasses. Associated with the divergence of $τ$, the quasi-equilibrated Young's modulus ${E_\infty}$ does not converge either. An elastic model of relaxation time and a Mori-Tanaka analysis of ${E_\infty}$ lead to a similar estimate of the persistent memory of the history, ergodicity breaking within the accessible experimental time. Experiments with different ${T_2}$ exhibits a critical temperature ${T_p \sim T_g}$, i.e., when ${T_2 > T_p}$, both $τ$ and ${E_\infty}$ converge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源