论文标题

$ k_ {r+1} $ - 带有小光谱半径的饱和图

$K_{r+1}$-saturated graphs with small spectral radius

论文作者

Kim, Jaehoon, Kim, Seog-Jin, Kostochka, Alexandr V., O, Suil

论文摘要

对于图$ h $,如果$ g $不包含$ h $作为子图,则图$ g $为$ h $饱和,而是e(\ overline {g})$,$ g+e $包含$ h $的任何$ e \。在本说明中,我们证明了路径数量的急剧下限,长度为$ 2 $ in $ n $ vertex $ k_ {r+1} $ - 饱和图。然后,我们使用此界限,在此类图的光谱半径上给出一个下限,对于每个固定的$ r $和$ n \ to \ infty $,这些图形均不紧密。

For a graph $H$, a graph $G$ is $H$-saturated if $G$ does not contain $H$ as a subgraph but for any $e \in E(\overline{G})$, $G+e$ contains $H$. In this note, we prove a sharp lower bound for the number of paths and walks on length $2$ in $n$-vertex $K_{r+1}$-saturated graphs. We then use this bound to give a lower bound on the spectral radii of such graphs which is asymptotically tight for each fixed $r$ and $n\to\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源