论文标题

微宏观方法中的水平密度

Level density within a micro-macroscopic approach

论文作者

Magner, A. G., Sanzhur, A. I., Fedotkin, S. N., Levon, A. I., Shlomo, S.

论文摘要

统计水平密度$ρ(e,a)$是针对给定能量$ e $,粒子数$ a $的核能系统得出的,而在费米气体模型的标准鞍点方法之外,微观宏观近似中的其他运动积分。该水平密度达到了两个限制。大型熵$ s $与大型激发能量有关的著名的费米气体大型集合限制,以及在低激发能量下的小型组合熵$ s $的有限微型典型限制。考虑到扩展的Thomas-Fermi和Strutinsky shell校正,在半经典周期性轨道理论中,逆级密度参数$ k $作为粒子数$ a $的函数,并与实验数据进行了比较。

Statistical level density $ρ(E,A)$ is derived for nucleonic system with a given energy $E$, particle number $A$ and other integrals of motion in the micro-macroscopic approximation beyond the standard saddle-point method of the Fermi gas model. This level density reaches the two limits; the well-known Fermi gas grand-canonical ensemble limit for a large entropy $S$ related to large excitation energies, and the finite micro-canonical limit for a small combinatorical entropy $S$ at low excitation energies. The inverse level density parameter $K$ as function of the particle number $A$ in the semiclassical periodic orbit theory, taking into account the extended Thomas-Fermi and Strutinsky shell corrections, is calculated and compared with experimental data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源