论文标题

$ \ MATHCAL {O}(N)$密度功能理论的应力张量的真实空间公式:高温计算应用

Real-space formulation of the stress tensor for $\mathcal{O}(N)$ density functional theory: application to high temperature calculations

论文作者

Sharma, Abhiraj, Hamel, Sebastien, Bethkenhagen, Mandy, Pask, John E., Suryanarayana, Phanish

论文摘要

我们提出了$ \ Mathcal {O}(n)$ Kohn-Sham密度功能理论(DFT)的hellmann-feynman压力张量的准确有效的真实空间公式。虽然在任何温度下适用,但在高温下,该配方最有效,而费米 - 迪拉克分布变得更加顺畅,并且密度矩阵变得更加局部。我们首先根据密度矩阵来重写实时DFT的轨道依赖性应力张量,从而使其适合$ \ Mathcal {O}(o}(n)$方法。然后,我们将其评估描述为$ \ nathcal {o}(n)$ infinite-cell clenshaw-curtis频谱正交(sq)方法,该技术适用于金属和绝缘系统,高度平行,可高效,随着温度的增加,并提供对相对的无需crellity Crysel crelliin crelliin crillian crillian frill frill frill frill frill frill frill frill rillian crillian frill rillian crillian crelliin cryriin cryner noce frill frill frill frill frill frill noce crelliin。我们证明了所得公式相对于SQ参数的系统收敛性与确切的对角度结果,并显示了相对于网格尺寸与已建立的PlaneWave结果的收敛性。我们采用新的公式来计算Kohn-Sham量子分子动力学的一百万开尔文的氢气的粘度,在此我们发现与以前更近似的无轨道密度功能方法一致。

We present an accurate and efficient real-space formulation of the Hellmann-Feynman stress tensor for $\mathcal{O}(N)$ Kohn-Sham density functional theory (DFT). While applicable at any temperature, the formulation is most efficient at high temperature where the Fermi-Dirac distribution becomes smoother and density matrix becomes correspondingly more localized. We first rewrite the orbital-dependent stress tensor for real-space DFT in terms of the density matrix, thereby making it amenable to $\mathcal{O}(N)$ methods. We then describe its evaluation within the $\mathcal{O}(N)$ infinite-cell Clenshaw-Curtis Spectral Quadrature (SQ) method, a technique that is applicable to metallic as well as insulating systems, is highly parallelizable, becomes increasingly efficient with increasing temperature, and provides results corresponding to the infinite crystal without the need of Brillouin zone integration. We demonstrate systematic convergence of the resulting formulation with respect to SQ parameters to exact diagonalization results, and show convergence with respect to mesh size to established planewave results. We employ the new formulation to compute the viscosity of hydrogen at a million kelvin from Kohn-Sham quantum molecular dynamics, where we find agreement with previous more approximate orbital-free density functional methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源