论文标题
SQCD和一对裤子
SQCD and pairs of pants
论文作者
论文摘要
我们表明,$ 4D $ $ {\ cal n} = 1 $ $ $ su(3)$ $ n_f = 6 $ sqCD是在三个刺破球(Trinion)上压实等级的一个E弦理论时获得的型号,该级别具有特定的磁通量。 $ su(6)\ times su(6)\ times u(1)$全局对对称性的对称,当分解为$ su(2)^3 \ times u(times u(times u(1)^3 \ times su(6)$ subgroup,对应于三个$ su(2)$ symmeties $ symmetries与$ u($ u(1)$ u(1)$ u(1)$ u(1)$ u(1)$ u(1)^3 \ ement(6)电子弦理论。所有穿刺对称性都在紫外线中表现出来,因此我们可以构造在IR中流动到E弦理论的任何紧凑型的普通Lagrangians。我们概括了这一说法,并认为$ {\ cal n} = 1 $ $ $ $ su(n+2)$ sqcd在共构窗口的中间,$ n_f = 2n+4 $,是通过压实$ 6D $ 6D $ minimal $(d_ {n+3},d_ {n+3},d_ {n+3},d_ {n+3},d_ {n+3},d_ { $ su(n+1)$穿刺,一个最小$ su(2)$穿刺,并具有特定的通量值。 The $SU(2N+4)\times SU(2N+4)\times U(1)$ symmetry of the UV Lagrangian decomposes into $SU(N+1)^2\times SU(2)$ puncture symmetries and the $U(1)^3\times SU(2N+4)$ subgroup of the $SO(12+4N)$ symmetry group of the $6d$ SCFT.由Trinions构建的模型表现出各种有趣的强耦合效应。例如,由四个刺破球的不同裤分解产生的二元性之一是$ su(n+2)$ $ su(2)$ sqcd的intrigator-pouliot二重性的概括,$ n_f = 4 $,这是一个退化,$ n = 0 $ n = 0 $,我们的讨论的实例。
We show that the $4d$ ${\cal N}=1$ $SU(3)$ $N_f=6$ SQCD is the model obtained when compactifying the rank one E-string theory on a three punctured sphere (a trinion) with a particular value of flux. The $SU(6)\times SU(6)\times U(1)$ global symmetry of the theory, when decomposed into the $SU(2)^3\times U(1)^3\times SU(6)$ subgroup, corresponds to the three $SU(2)$ symmetries associated to the three punctures and the $U(1)^3 \times SU(6)$ subgroup of the $E_8$ symmetry of the E-string theory. All the puncture symmetries are manifest in the UV and thus we can construct ordinary Lagrangians flowing in the IR to any compactification of the E-string theory. We generalize this claim and argue that the ${\cal N}=1$ $SU(N+2)$ SQCD in the middle of the conformal window, $N_f=2N+4$, is the theory obtained by compactifying the $6d$ minimal $(D_{N+3},D_{N+3})$ conformal matter SCFT on a sphere with two maximal $SU(N+1)$ punctures, one minimal $SU(2)$ puncture, and with a particular value of flux. The $SU(2N+4)\times SU(2N+4)\times U(1)$ symmetry of the UV Lagrangian decomposes into $SU(N+1)^2\times SU(2)$ puncture symmetries and the $U(1)^3\times SU(2N+4)$ subgroup of the $SO(12+4N)$ symmetry group of the $6d$ SCFT. The models constructed from the trinions exhibit a variety of interesting strong coupling effects. For example, one of the dualities arising geometrically from different pair-of-pants decompositions of a four punctured sphere is an $SU(N+2)$ generalization of the Intriligator-Pouliot duality of $SU(2)$ SQCD with $N_f=4$, which is a degenerate, $N=0$, instance of our discussion.