论文标题
平面$(2,3,5)$ - 分配的联系映射
The contact mappings of a flat $(2,3,5)$-distribution
论文作者
论文摘要
令$ω$和$ω'$为扁平$(2,3,5)$ - 分布的打开子集。我们表明,$ c^1 $ -smooth触点映射$ f:ω\ toω'$是$ c^\ infty $ -smooth触点映射。最终,这是相关分层谎言组刚度的结果(塔纳卡式代数的延长是有限的)。通过仔细研究通过$ c^1 $ -SMOTH触点映射的pansu衍生成分满足的一些差异身份来得出结论。
Let $Ω$ and $Ω'$ be open subsets of a flat $(2,3,5)$-distribution. We show that a $C^1$-smooth contact mapping $f : Ω\to Ω'$ is a $C^\infty$-smooth contact mapping. Ultimately, this is a consequence of the rigidity of the associated stratified Lie group (the Tanaka prolongation of the Lie algebra is of finite-type). The conclusion is reached through a careful study of some differential identities satisfied by components of the Pansu-derivative of a $C^1$-smooth contact mapping.