论文标题
关于公制空间中Lipschitz图像的Hausdorff测量性的一些评论
Some Remarks on Hausdorff Measurability of Lipschitz Images in Metric Spaces
论文作者
论文摘要
在此简短说明中,我们表明,在任何给定的度量空间中,每个lipschitz的每个子集的每个子集的每个子集的边界是hausdorff-null相对于相同的维度可测量的。主要结果与其他分支中的许多熟悉概念有关,例如复杂分析,功能分析和拓扑。
In this short note, we show that, in any given metric space, every Lipschitz open-map image of every subset of a given metric space whose boundary is Hausdorff-null is Hausdorff-measurable with respect to the same dimension. The main results are connected with a number of familiar concepts in other branches such as complex analysis, functional analysis, and topology.