论文标题
II型超新星对哈勃常数的测量
A measurement of the Hubble constant from Type II supernovae
论文作者
论文摘要
通过CepheId校准的IA型IA Supernovae(SNE IA)的渐进式增长,显示出$ \ sim4.4σ$的差异,并从普朗克卫星测量值推断出的当前值的差异是COSMIC Microwave背景辐射和标准$λ$ COSMODIC模型的差异。这种分歧似乎并不是由于已知的系统错误,因此可能暗示了新的基本物理学。尽管所有当前的技术都有自己的优点,但是在限制哈勃常数方面的进一步改进需要发展尽可能多的独立方法。在这项工作中,我们使用SNE II作为标准蜡烛来获得对哈勃常数的独立测量。使用7 sne II与宿主 - 甘拉克斯距离距离从Cepheid变量或红色巨型分支的尖端测量,我们得出H $ _0 = 75.8^{+5.2} _ { - 4.9} $ s $ s $ s $ s $ s $^{ - 1} $ MPC $^{ - 1} $(仅统计errors)。我们从常规距离梯子(Cepheids + sne IA)获得的价值偏爱,并显示出8.4 km S $^{ - 1} $ MPC $^{ - 1} $从Planck $ +λ$ CDM值中获得的差异。添加系统错误的估计值(2.8 km s $^{ - 1} $ mpc $^{ - 1} $)更改$ \ sim1.7σ$差异,使用Planck $+λ$ CDM到$ \ sim1.4σ$。包括系统的错误和执行自举模拟,我们确认本地H $ _0 $值超过了早期宇宙的值,置信度为95%。就像在这项工作中,我们仅将II sne IA交换以测量静脉外距离,我们证明没有证据表明sne ia是h $ _0 $张力的来源。
Progressive increases in the precision of the Hubble-constant measurement via Cepheid-calibrated Type Ia supernovae (SNe Ia) have shown a discrepancy of $\sim 4.4σ$ with the current value inferred from Planck satellite measurements of the cosmic microwave background radiation and the standard $Λ$CDM cosmological model. This disagreement does not appear to be due to known systematic errors and may therefore be hinting at new fundamental physics. Although all of the current techniques have their own merits, further improvement in constraining the Hubble constant requires the development of as many independent methods as possible. In this work, we use SNe II as standardisable candles to obtain an independent measurement of the Hubble constant. Using 7 SNe II with host-galaxy distances measured from Cepheid variables or the tip of the red giant branch, we derive H$_0= 75.8^{+5.2}_{-4.9}$ km s$^{-1}$ Mpc$^{-1}$ (statistical errors only). Our value favours that obtained from the conventional distance ladder (Cepheids + SNe Ia) and exhibits a difference of 8.4 km s$^{-1}$ Mpc$^{-1}$ from the Planck $+Λ$CDM value. Adding an estimate of the systematic errors (2.8 km s$^{-1}$ Mpc$^{-1}$) changes the $\sim 1.7σ$ discrepancy with Planck $+Λ$CDM to $\sim 1.4σ$. Including the systematic errors and performing a bootstrap simulation, we confirm that the local H$_0$ value exceeds the value from the early Universe with a confidence level of 95%. As in this work we only exchange SNe II for SNe Ia to measure extragalactic distances, we demonstrate that there is no evidence that SNe Ia are the source of the H$_0$ tension.