论文标题
对称的Bloch-Okounkov定理
A symmetric Bloch-Okounkov theorem
论文作者
论文摘要
所谓的分区移动对称函数的代数具有该属性,该属性对于所有元素而言,某个生成序列(称为$ q $ bracket)是一种准模块化形式。更一般而言,如果分区上的分级代数$ a $ a $ a $具有一个属性,即每个元素的$ q $ - 支架都是相同重量的准模块化形式,我们称$ a $ a $ a a $ a ic-osimodular代数。我们引入了一个新的准排相代数,该代数由零件大小和多重性的对称多项式组成。
The algebra of so-called shifted symmetric functions on partitions has the property that for all elements a certain generating series, called the $q$-bracket, is a quasimodular form. More generally, if a graded algebra $A$ of functions on partitions has the property that the $q$-bracket of every element is a quasimodular form of the same weight, we call $A$ a quasimodular algebra. We introduce a new quasimodular algebra consisting of symmetric polynomials in the part sizes and multiplicities.