论文标题

基于深度学习的减少订单模型

Deep learning-based reduced order models in cardiac electrophysiology

论文作者

Fresca, Stefania, Manzoni, Andrea, Dedè, Luca, Quarteroni, Alfio

论文摘要

从细胞尺度到组织水平,预测心脏的电行为,取决于耦合非线性动力学系统的制剂和数值近似。这些系统描述了心脏作用电位,即在每个心跳处发生的极化/去极化循环,该循环模拟了整个细胞膜的电势的时间演化以及一组离子变量。这些系统的多种解决方案(与不同模型输入相对应)是需要评估临床感兴趣的输出的,例如激活图和动作电位持续时间。更重要的是,这些模型具有一致的结构,这些结构会随着时间的流逝而传播,例如波前。通过常规降低的订单模型(ROM),例如,减少基础(RB)方法,这些系统几乎不能将其降低为较低的维度问题。这主要是由于解决方案歧管(相对于问题参数)以及我们打算以数值重建的输入输出映射的非线性性质以及非线性性质。为了克服这一困难,在本文中,我们提出了一种新的非线性方法,该方法利用深度学习(DL)算法以获得准确有效的ROM,其维度与系统参数的数量匹配。我们的DL方法结合了深度馈电神经网络(NNS)和卷积自动编码器(AES)。我们表明,所提出的DL-ROM框架可以有效地为参数化的电生理问题提供解决方案,从而在病理病例中实现多scenario分析。我们研究了三个挑战性的心脏电生理测试案例,并证明DL-ROM胜过基于经典投影的ROM。

Predicting the electrical behavior of the heart, from the cellular scale to the tissue level, relies on the formulation and numerical approximation of coupled nonlinear dynamical systems. These systems describe the cardiac action potential, that is the polarization/depolarization cycle occurring at every heart beat that models the time evolution of the electrical potential across the cell membrane, as well as a set of ionic variables. Multiple solutions of these systems, corresponding to different model inputs, are required to evaluate outputs of clinical interest, such as activation maps and action potential duration. More importantly, these models feature coherent structures that propagate over time, such as wavefronts. These systems can hardly be reduced to lower dimensional problems by conventional reduced order models (ROMs) such as, e.g., the reduced basis (RB) method. This is primarily due to the low regularity of the solution manifold (with respect to the problem parameters) as well as to the nonlinear nature of the input-output maps that we intend to reconstruct numerically. To overcome this difficulty, in this paper we propose a new, nonlinear approach which exploits deep learning (DL) algorithms to obtain accurate and efficient ROMs, whose dimensionality matches the number of system parameters. Our DL approach combines deep feedforward neural networks (NNs) and convolutional autoencoders (AEs). We show that the proposed DL-ROM framework can efficiently provide solutions to parametrized electrophysiology problems, thus enabling multi-scenario analysis in pathological cases. We investigate three challenging test cases in cardiac electrophysiology and prove that DL-ROM outperforms classical projection-based ROMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源