论文标题
保守的Hénon样地图的可逆扰动
Reversible perturbations of conservative Hénon-like maps
论文作者
论文摘要
对于具有区域的类似于Hénon的地图及其作品,我们认为平稳的扰动可以保持初始地图的可逆性,但破坏了它们的保守性。为了构建这种扰动,我们使用两种方法,即基于所谓交叉形式的地图的可逆属性的原始方法,以及基于初始地图的变化的经典Quispel-Roberts方法。我们研究了包含二次保守定向和不可定向的hénon地图的可逆家庭中对称点的对称分叉,以及两个不对称的hénon映射的产物(带有jacobians $ b $ b $ b $和$ b^{ - 1} $)。
For area-preserving Hénon-like maps and their compositions, we consider smooth perturbations that keep the reversibility of the initial maps but destroy their conservativity. For constructing such perturbations, we use two methods, the original method based on reversible properties of maps written in the so-called cross-form, and the classical Quispel-Roberts method based on a variation of involutions of the initial map. We study symmetry breaking bifurcations of symmetric periodic points in reversible families containing quadratic conservative orientable and nonorientable Hénon maps as well as the product of two asymmetric Hénon maps (with the Jacobians $b$ and $b^{-1}$).