论文标题

CAPPA:连续的时间加速近端算法,用于稀疏恢复

CAPPA: Continuous-time Accelerated Proximal Point Algorithm for Sparse Recovery

论文作者

Garg, Kunal, Baranwal, Mayank

论文摘要

本文为$ \ ell_1 $ - 毫米化问题开发了一种新颖的连续时间加速近端算法(CAPPA),具有可证明的固定时间收敛保证。 $ \ ell_1 $ - 最小化的问题出现在几种情况下,例如压缩感应(CS)理论中的稀疏恢复(SR),以及机器学习中的稀疏线性和逻辑回归以命名一些。用于解决$ \ ell_1 $最小化问题的大多数现有算法是离散的时间,效率低下且需要详尽的计算机引导的迭代。 CAPPA在两个方面减轻了这个问题:(a)它涵盖了可以使用模拟电路实现的连续时间算法; (b)通过向最佳解决方案展示可证明的固定时间收敛性,它可以更好地改善LCA和有限的LCA(最近开发的连续时间动力学系统来解决SR问题)。因此,CAPPA更适合快速有效地处理SR问题。提出了模拟研究证实了CAPPA的计算优势。

This paper develops a novel Continuous-time Accelerated Proximal Point Algorithm (CAPPA) for $\ell_1$-minimization problems with provable fixed-time convergence guarantees. The problem of $\ell_1$-minimization appears in several contexts, such as sparse recovery (SR) in Compressed Sensing (CS) theory, and sparse linear and logistic regressions in machine learning to name a few. Most existing algorithms for solving $\ell_1$-minimization problems are discrete-time, inefficient and require exhaustive computer-guided iterations. CAPPA alleviates this problem on two fronts: (a) it encompasses a continuous-time algorithm that can be implemented using analog circuits; (b) it betters LCA and finite-time LCA (recently developed continuous-time dynamical systems for solving SR problems) by exhibiting provable fixed-time convergence to optimal solution. Consequently, CAPPA is better suited for fast and efficient handling of SR problems. Simulation studies are presented that corroborate computational advantages of CAPPA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源