论文标题

非热物理学

Non-Hermitian Physics

论文作者

Ashida, Yuto, Gong, Zongping, Ueda, Masahito

论文摘要

对非亚米亚语古典和量子物理学的基础和应用进行了审查。首先,以教学法和数学连贯的方式划定了非弱点线性代数中的关键定理和中心概念,包括约旦正常形式,生物表现,异常点,伪 - 热与对称性。在这些基础上,我们概述了从光子学,力学,电路,声学到主动物质的各种经典系统如何用于模拟非弱者波浪物理学。特别是,我们讨论了其中发现的丰富而独特的现象,例如单向隐形,灵敏度增强,拓扑能量转移,相干的完美吸收,单模激光和强大的生物传输。然后,我们详细解释了非热门操作员如何根据Feshbach投影方法和量子轨迹方法出现作为开放量子系统的有效描述。我们讨论了它们在与各个领域相关的物理系统中的应用,包括原子,分子和光学物理学,介质物理学以及核物理学,重点是量子共鸣,超级良好,超级良好,连续量子Zeno效应,量子关键综合性,质量cromym intmanm in量子和量子的量子,量子和量子等量子中的突出现象/受试者。最后,我们介绍了非富米系统复杂谱中的频段拓扑概念,并通过提供证据来介绍其分类,首先是本综述以完整的方式给出的,以及许多启发性的例子。还审查了与非候选物理学有关的其他主题,包括非近代运输,速度限制,非自然量子步行。

A review is given on the foundations and applications of non-Hermitian classical and quantum physics. First, key theorems and central concepts in non-Hermitian linear algebra, including Jordan normal form, biorthogonality, exceptional points, pseudo-Hermiticity and parity-time symmetry, are delineated in a pedagogical and mathematically coherent manner. Building on these, we provide an overview of how diverse classical systems, ranging from photonics, mechanics, electrical circuits, acoustics to active matter, can be used to simulate non-Hermitian wave physics. In particular, we discuss rich and unique phenomena found therein, such as unidirectional invisibility, enhanced sensitivity, topological energy transfer, coherent perfect absorption, single-mode lasing, and robust biological transport. We then explain in detail how non-Hermitian operators emerge as an effective description of open quantum systems on the basis of the Feshbach projection approach and the quantum trajectory approach. We discuss their applications to physical systems relevant to a variety of fields, including atomic, molecular and optical physics, mesoscopic physics, and nuclear physics with emphasis on prominent phenomena/subjects in quantum regimes, such as quantum resonances, superradiance, continuous quantum Zeno effect, quantum critical phenomena, Dirac spectra in quantum chromodynamics, and nonunitary conformal field theories. Finally, we introduce the notion of band topology in complex spectra of non-Hermitian systems and present their classifications by providing the proof, firstly given by this review in a complete manner, as well as a number of instructive examples. Other topics related to non-Hermitian physics, including nonreciprocal transport, speed limits, nonunitary quantum walk, are also reviewed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源