论文标题

在差异隐私下重新加权矢量加权机制,以最大化实用性最大化

Re-weighting of Vector-weighted Mechanisms for Utility Maximization under Differential Privacy

论文作者

Savitsky, Terrance D., Hu, Jingchen, Williams, Matthew R.

论文摘要

我们通过新的重新加权策略来解决微型传播的风险加权伪后验合成器的实际实施,该策略在任何级别的正式隐私保证级别下最大化已发布的合成数据的实用性。我们的重新加权策略适用于任何矢量加权伪后验机制,在该机制下,使用观察指数权重的向量用于减少高披露风险记录的可能性贡献。我们在针对高风险记录的两个不同矢量加权方案上演示了我们的方法。我们的新方法构建记录索引的下降方法通过调整副记录的权重来使矢量加权合成器的任何隐私预算下的数据实用程序最大化,从而使他们的单个Lipschitz界限接近整个数据库的界限。我们的方法可以在数据库的空间内实现$(ε=2δ_ {\boldsymbolα}) - $渐近差异隐私(ADP)保证。我们使用模拟高度偏斜的计数数据说明了我们的方法,并将结果与​​指数机理(EM)下的标量加权合成器进行了比较。我们还将我们的方法应用于博士学博士学位的调查样本,并证明了我们方法的实用性。

We address practical implementation of a risk-weighted pseudo posterior synthesizer for microdata dissemination with a new re-weighting strategy that maximizes utility of released synthetic data under at any level of formal privacy guarantee. Our re-weighting strategy applies to any vector-weighted pseudo posterior mechanism under which a vector of observation-indexed weights are used to downweight likelihood contributions for high disclosure risk records. We demonstrate our method on two different vector-weighted schemes that target high-risk records. Our new method for constructing record-indexed downeighting maximizes the data utility under any privacy budget for the vector-weighted synthesizers by adjusting the by-record weights, such that their individual Lipschitz bounds approach the bound for the entire database. Our method achieves an $(ε= 2 Δ_{\boldsymbolα})-$asymptotic differential privacy (aDP) guarantee, globally, over the space of databases. We illustrate our methods using simulated highly skewed count data and compare the results to a scalar-weighted synthesizer under the Exponential Mechanism (EM). We also apply our methods to a sample of the Survey of Doctorate Recipients and demonstrate the practicality of our methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源