论文标题

相对关键的基因座和箭袋模量

Relative critical loci and quiver moduli

论文作者

Bozec, Tristan, Calaque, Damien, Scherotzke, Sarah

论文摘要

在本文中,我们确定了Quviver $ Q $的派生堆栈,以及与$ Q $相关的Ginzburg DG-Algebra上的衍生模量模块堆栈。更一般而言,我们将此结果扩展到有限类型的DG类别,也将其扩展到相对设置,并将其变形。它使我们能够恢复并概括Yeung的一些结果,并使我们在飞机上的希尔伯特方案中发现了看似新的拉格朗日群。

In this paper we identify the cotangent to the derived stack of representations of a quiver $Q$ with the derived moduli stack of modules over the Ginzburg dg-algebra associated with $Q$. More generally, we extend this result to finite type dg-categories, to a relative setting as well, and to deformations of these. It allows us to recover and generalize some results of Yeung, and leads us to the discovery of seemingly new lagrangian subvarieties in the Hilbert scheme of points in the plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源