论文标题

在多项式的普通素数上

On the Common Prime Divisors of Polynomials

论文作者

Järviniemi, Olli

论文摘要

带有整数系数的多项式$ p $的主要除数是$ p(x)\ equiv 0 \ pmod {p} $的primes $ p $。我们的主要结果是,任何几个多项式的共同质量分节恰好是某些单个多项式的质数。通过将此结果与AX的定理相结合,我们可以获得具有整数系数的任何系统$ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ as可解决的模元$ p $的primes $ p $。此外,我们证明了多项式主要分裂的密度结果。该文章是对代数数理论和GALOIS理论的光介绍。

The prime divisors of a polynomial $P$ with integer coefficients are those primes $p$ for which $P(x) \equiv 0 \pmod{p}$ is solvable. Our main result is that the common prime divisors of any several polynomials are exactly the prime divisors of some single polynomial. By combining this result with a theorem of Ax we get that for any system $F$ of multivariate polynomial equations with integer coefficients, the set of primes $p$ for which $F$ is solvable modulo $p$ is the set of prime divisors of some univariate polynomial. In addition, we prove results on the densities of the prime divisors of polynomials. The article serves as a light introduction to algebraic number theory and Galois theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源