论文标题
扭曲的准椭圆形相同学和扭曲的椭圆形相同学
Twisted Quasi-elliptic cohomology and twisted equivariant elliptic cohomology
论文作者
论文摘要
在本文中,我们构建了曲折版本的准纤维化共同体。该理论可以作为循环空间的K理论构建。在建立了理论的基本特性(包括限制,组更改和感应图)之后,我们构建了Chern字符图。并且我们计算了代表的扭曲的准纤维化共同体学理论,由su(2)的有限亚组作用,这是由sati和schreiber猜想的,可以在Tate-braniptic增强扭曲的twisted equivariant K-eariant K-theory中的tate-Braniptic增强中产生良好的观察力。
In this paper we construct a twisted version of quasi-elliptic cohomology. This theory can be constructed as a K-theory of a loop space. After establishing basic properties of the theory, including restriction, change-of-group and induction maps, we construct the Chern character map. And we compute the twisted quasi-elliptic cohomology theories of representation 4-spheres acted by the finite subgroups of SU(2), which, as conjectured by Sati and Schreiber, can produce good observables on M-brane charge in a Tate-elliptic enhancement of D-brane charge in twisted equivariant K-theory.