论文标题
郭和施洛瑟猜想的Q-Supercongruence的证明
Proof of a q-supercongruence conjectured by Guo and Schlosser
论文作者
论文摘要
在本文中,我们确认了Guo和Schlosser的以下猜想:对于任何奇数$ n> 1 $和$ m =(n+1)/2 $或$ n-1 $,$$,$$ \ sum_ {k = 0}^{m} [4K-1] _ {q^2} [4K-1]^2 \ frac {(q^{ - 2}; q^4)_k^4} {(q^4; q^4; q^4; q^4; q^4) (2q+2q^{ - 1} -1)[n] _ {q^2}^4 \ pmod {[n] _ {q^2}^4φ_n(q^2)},$$ $ [n] = [n] _q =(1-q^n)/(1-q),(a; q)_0 = 1,(a; q)_k =(1-a)(1-aq)(1-aq)\ cdots(1-aq^{k-1})$ for $ k \ geq 1 $ and $ n(q)$ n(q)$ n(q)$ n $N。
In this paper, we confirm the following conjecture of Guo and Schlosser: for any odd integer $n>1$ and $M=(n+1)/2$ or $n-1$, $$ \sum_{k=0}^{M}[4k-1]_{q^2}[4k-1]^2\frac{(q^{-2};q^4)_k^4}{(q^4;q^4)_k^4}q^{4k}\equiv (2q+2q^{-1}-1)[n]_{q^2}^4\pmod{[n]_{q^2}^4Φ_n(q^2)}, $$ where $[n]=[n]_q=(1-q^n)/(1-q),(a;q)_0=1,(a;q)_k=(1-a)(1-aq)\cdots(1-aq^{k-1})$ for $k\geq 1$ and $Φ_n(q)$ denotes the $n$-th cyclotomic polynomial.