论文标题
非压缩磁流体动力学和拓扑保护法中欧拉差异原理的诺伊尔电流
Noether Currents for Eulerian Variational Principles in Non Barotropic Magnetohydrodynamics and Topological Conservations Laws
论文作者
论文摘要
我们得出了理想非 - 脑磁流体动力学(MHD)的欧拉(Eulerian)变分原理的nue电流。先前证明,在数学上,理想的非偏射MHD在数学上等同于具有诱导的几何结构的五函数场理论,在磁场覆盖表面的情况下,可以使用变异原理来描述该理论。在这里,我们使用流量的各种对称性来通过衍生的Noether电流来得出运动的拓扑常数,并讨论它们对非北极性MHD的影响。
We derive a Noether current for the Eulerian variational principle of ideal non-barotropic magnetohydrodynamics (MHD). It was shown previously that ideal non-barotropic MHD is mathematically equivalent to a five function field theory with an induced geometrical structure in the case that field lines cover surfaces and this theory can be described using a variational principle. Here we use various symmetries of the flow to derive topological constants of motion through the derived Noether current and discuss their implication for non-barotropic MHD.