论文标题
云服务中的自动缩放理论用于资源保留
A Theory of Auto-Scaling for Resource Reservation in Cloud Services
论文作者
论文摘要
我们考虑一个由大量服务器组成的分布式服务器系统,每个服务器的多个资源容量有限(CPU,内存,磁盘等)。随着时间的推移,具有不同奖励的工作到达,并需要在其服务期间进行一定数量的资源。当工作到达时,系统必须决定是允许还是拒绝它,如果接纳,则在哪个服务器上安排工作。目的是最大程度地提高系统收到的预期奖励。此问题是由控制云计算群集的控制而激发的,其中作业是为各种服务保留资源的虚拟机或容器的请求,奖励代表客户的请求或价格支付的服务优先级。我们在渐近制度中研究了这个问题,随着$ l $的大量,服务器和工作的到达率的尺度提高了一个因子$ l $。我们提出了一项资源保留政策,该政策渐近地实现至少$ 1/2 $,并且在某些单调的奖励和资源上,最佳预期奖励的$ 1-1/e $。随着需求的变化,该策略会自动扩展每种作业类型的VM插槽数,并决定在不知道交通速率的情况下应提前创建插槽的服务器。它有效地跟踪了系统中现有作业的低复杂性贪婪包装,同时仅维持少量数字,$ g(l)=ω(\ log l)$,保留的VM插槽,用于高优先级作业。
We consider a distributed server system consisting of a large number of servers, each with limited capacity on multiple resources (CPU, memory, disk, etc.). Jobs with different rewards arrive over time and require certain amounts of resources for the duration of their service. When a job arrives, the system must decide whether to admit it or reject it, and if admitted, in which server to schedule the job. The objective is to maximize the expected total reward received by the system. This problem is motivated by control of cloud computing clusters, in which, jobs are requests for Virtual Machines or Containers that reserve resources for various services, and rewards represent service priority of requests or price paid per time unit of service by clients. We study this problem in an asymptotic regime where the number of servers and jobs' arrival rates scale by a factor $L$, as $L$ becomes large. We propose a resource reservation policy that asymptotically achieves at least $1/2$, and under certain monotone property on jobs' rewards and resources, at least $1-1/e$ of the optimal expected reward. The policy automatically scales the number of VM slots for each job type as the demand changes, and decides in which servers the slots should be created in advance, without the knowledge of traffic rates. It effectively tracks a low-complexity greedy packing of existing jobs in the system while maintaining only a small number, $g(L)=ω(\log L)$, of reserved VM slots for high priority jobs that pack well.