论文标题

一般相对论的保守费用

Conserved charges in general relativity

论文作者

Aoki, Sinya, Onogi, Tetsuya, Yokoyama, Shuichi

论文摘要

我们从任意的协变量保守的电流中提供了保守数量的精确定义,并在一般弯曲的时空中可用,并带有杀伤向量。该定义使我们能够通过数量积分来定义物质的能量和动力。结果,我们可以通过Delta函数奇异性的体积积分来计算Schwarzschild和BTZ黑洞的电荷。采用定义,我们还计算了静态紧凑型恒星的总能量。它既包含在Oppenhemer-volkoff方程和重力结合能中称为Misner-Sharp质量的重力质量。我们表明,在恒定密度的情况下,重力结合能的最大贡献是重力质量的68%。我们最终评论了一般弯曲流形上与矢量字段相关的发电机的定义。

We present a precise definition of a conserved quantity from an arbitrary covariantly conserved current available in a general curved spacetime with Killing vectors. This definition enables us to define energy and momentum for matter by the volume integral. As a result we can compute charges of Schwarzschild and BTZ black holes by the volume integration of a delta function singularity. Employing the definition we also compute the total energy of a static compact star. It contains both the gravitational mass known as the Misner-Sharp mass in the Oppenheimer-Volkoff equation and the gravitational binding energy. We show that the gravitational binding energy has the negative contribution at maximum by 68% of the gravitational mass in the case of a constant density. We finally comment on a definition of generators associated with a vector field on a general curved manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源