论文标题
$ f(r)$重力中的通货膨胀吸引子
Inflationary Attractors in $F(R)$ Gravity
论文作者
论文摘要
在这封信中,我们将证明可行的$ f(r)$重力可以分为两类的通货膨胀吸引子,即$ r^2 $吸引者或$α$ - 吸引者。为了证明这一点,我们将通过假设慢速滚动条件约束慢滚子索引的值,从而得出张量与尺度比率$ r $ $ r $ $ r $ $ r $和原始曲率的光谱指数,即$ r-n_s $之间的关系。如我们所示,张量比比率与原始曲率扰动的光谱指数之间的关系具有$ r \ simeq \ frac {48(1-n_s)^2} {(1-n_s)^2} {(4-x){(4-x)^2} $,在$ x $中,$ x $ compor $ x $ contriv and cartir cartit cartir and cartitiation $ x $ fation and Itition $ f(r)是$ e $ foldings number $ n $的函数,也可能是各种$ f(r)$重力模型的免费参数的函数。对于具有与观察数据兼容的频谱索引兼容的$ f(r)$重力,它们也属于$ r^2 $ type的吸引子,具有$ r \ r \ sim 3(1-n_s)^2 $,这些都是可行的。此外,如果$ x $在特定范围内采用较大的值,并且对于给定的$ f(r)$重重是恒定的,则结果$ r-n_s $关系具有$ r \ sim3α(1-n_s)^2 $的形式,其中$α$是常数。因此,我们得出的结论是,可行的$ f(r)$重重可以分为两种限制类型的$ r-n_s $关系,一种与$ x $中的$ r^2 $型号相同,一种类似于$ f(r)$ f(r)$ f(r)$ f(r)$ f(r)$ f(r)$ f(r)$ farvemity型号。最后,我们还讨论了$ x $不是恒定的案例。
In this letter we shall demonstrate that the viable $F(R)$ gravities can be classified mainly into two classes of inflationary attractors, either the $R^2$ attractors or the $α$-attractors. To show this, we shall derive the most general relation between the tensor-to-scalar ratio $r$ and the spectral index of primordial curvature perturbations $n_s$, namely the $r-n_s$ relation, by assuming that the slow-roll condition constrains the values of the slow-roll indices. As we show, the relation between the tensor-to-scalar ratio and the spectral index of the primordial curvature perturbations has the form $r\simeq \frac{48 (1-n_s)^2}{(4-x)^2}$, where the dimensionless parameter $x$ contains higher derivatives of the $F(R)$ gravity function with respect to the Ricci scalar, and it is a function of the $e$-foldings number $N$ and may also be a function of the free parameters of the various $F(R)$ gravity models. For $F(R)$ gravities which have a spectral index compatible with the observational data and also yield $x\ll 1$, these belong to the $R^2$-type of attractors, with $r\sim 3 (1-n_s)^2$, and these are viable theories. Moreover, in the case that $x$ takes larger values in specific ranges and is constant for a given $F(R)$ gravity, the resulting $r-n_s$ relation has the form $r\sim 3 α(1-n_s)^2$, where $α$ is a constant. Thus we conclude that the viable $F(R)$ gravities may be classified into two limiting types of $r-n_s$ relations, one identical to the $R^2$ model at leading order in $x$, and one similar to the $α$-attractors $r-n_s$ relation, for the $F(R)$ gravity models that yield $x$ constant. Finally, we also discuss the case that $x$ is not constant.